Morning! Get started on the quiz right away! SSS SAS AAS ASA What are the 4 ways we can prove $\Delta \cong$? SSS SAS AAS ASA SSS SAS **AAS** **ASA** The defn of $\Delta \cong$ depends on determining... What are the 4 ways we can prove $\Delta \cong$? SSS SAS AAS **ASA** The defn of $\Delta \cong$ depends on determining that corresponding parts are congruent. SSS SAS AAS **ASA** The defn of $\Delta \cong$ depends on determining that corresponding parts are congruent. What are the 4 ways we can prove $\Delta \cong$? SSS SAS **AAS** **ASA** The defn of $\Delta \cong$ depends on determining that a certain set of corresponding parts are congruent. ### Definition: Congruent Polygons ### Definition: Congruent Polygons Two polygons are congruent *iff* all corresponding parts are congruent. ### Definition: Congruent Polygons Two polygons are congruent *iff* all corresponding parts are congruent. ### Definition: Congruent Polygons All corresponding parts of 2 polygons are \cong *iff* the polygons are congruent. # Definition: Congruent Polygous All corresponding parts of 2 pd ygons 20 ≈ iff the polygons are congruent. Corresponding parts of congruent triangles are _____. Corresponding parts of congruent triangles are congruent. ## Corresponding Parts of Congruent Triangles are Congruent. How do we use **CPCTC**? ### How do we use **CPCTC**? ...to show that certain parts of 2 $\Delta\text{'s}$ are \cong ### How do we use **CPCTC**? ...to show that certain parts of 2 $\Delta\text{'s}$ are \cong 1) Usually start with limited information ### How do we use **CPCTC**? ...to show that certain parts of 2 Δ 's are \cong - 1) Usually start with limited information - 2) Prove the Δ 's \cong using SSS, SAS, AAS, or ASA ### How do we use **CPCTC**? ...to show that certain parts of 2 $\Delta\text{'s}$ are \cong - 1) Usually start with limited information - 2) Prove the Δ 's \cong using SSS, SAS, AAS, or ASA - 3) Identify remaining corresponding parts ### How do we use **CPCTC**? ...to show that certain parts of 2 Δ 's are \cong - 1) Usually start with limited information - 2) Prove the Δ 's \cong using SSS, SAS, AAS, or ASA - 3) Identify remaining corresponding parts - 4) CPCTC \Rightarrow all corresponding parts are \cong Using equations (algebra) to learn things about shapes (geometry). Using equations (algebra) to learn things about shapes (geometry). $$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$ ### **Analytic Geometry** Using equations (algebra) to learn things about shapes (geometry). $$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$ $$Mid pt = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$ Using equations (algebra) to learn things about shapes (geometry). $$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$ $$Mid pt = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$ ### **Analytic Geometry** Using equations (algebra) to learn $A = \frac{1}{2}bh$ things about shapes (geometry). $$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$ Mid pt = $$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$ Using equations (algebra) to learn things about shapes (geometry). $$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$ $$Mid pt = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$ ### **Analytic Geometry** Using equations (algebra) to learn things about shapes (geometry). $$A = \frac{1}{2bh}$$ $$C = 2\pi r$$ $$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$ Mid pt = $$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$ Using equations (algebra) to learn things about shapes (geometry). $$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$ $$y = mx + b$$ $$Mid pt = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$ ### **Analytic Geometry** $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $$y = mx + b$$ $$y = mx + b$$ Mid pt = $$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$ Using equations (algebra) to learn things about shapes (geometry). $$Ax + By = C$$ $$y = mx + b$$ $$y = mx + b$$ $$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$ $$Mid pt = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$ ### **Analytic Geometry** things about shapes (geometry). Using equations (algebra) to learn things about shapes (geometry). $$A = \frac{bh}{h}$$ $$Ax + By = C$$ $$y = mx + b$$ $$y = mx + b$$ $$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$ $$m\angle A + m\angle B + m\angle C = 180$$ $$Mid pt = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$ Using equations (algebra) to learn $A = \frac{1}{2bh}$ $C = 2\pi V$ things about shapes (geometry). $$d = \sqrt{(x_2 - x_1) + (y_2 - y_1)}$$ $$m\angle A + m\angle B + m\angle C = 180$$ $$Mid pt = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$ $$2x = 9 + y$$ $$x + y = 90$$ Equations $$2x = 9 + y$$ $$x + y = 90$$ - 1) Pick 1 of the equations...and solve for y - 2) Subst back into the other equation - 3) Solve for *x* - 4) Use known value of x to find y - 5) Double-check your answer! $$2x = 9 + y$$ $$x + y = 90$$ - 1) Pick 1 of the equations...and solve for y - 2) Subst back into the other equation - 3) Solve for *x* - 4) Use known value of x to find y - 5) Double-check your answer! $$2x = 9 + y$$ $$x + y = 90$$ - 1) Pick 1 of the equations...and solve for y - 2) Subst back into the other equation - 3) Solve for *x* - 4) Use known value of x to find y - 5) Double-check your answer! $$2x = 9 + y$$ $$x + y = 90 \Rightarrow y = 90 - x$$ - 1) Pick 1 of the equations...and solve for y - 2) Subst back into the other equation - 3) Solve for *x* - 4) Use known value of x to find y - 5) Double-check your answer! $$2x = 9 + y$$ $$x + y = 90 \Rightarrow y = 90 - x$$ - 1) Pick 1 of the equations...and solve for *y* - 2) Subst back into the other equation - 3) Solve for *x* - 4) Use known value of x to find y - 5) Double-check your answer! $$2x = 9 + y$$ $$x + y = 90 \Rightarrow y = 90 - x$$ - 1) Pick 1 of the equations...and solve for y - 2) Subst back into the other equation - 3) Solve for *x* - 4) Use known value of x to find y - 5) Double-check your answer! $$2x = 9 + y$$ $$x + y = 90 \Rightarrow y = 90 - x$$ - 1) Pick 1 of the equations...and solve for *y* - 2) Subst back into the other equation - 3) Solve for *x* - 4) Use known value of x to find y - 5) Double-check your answer! $$2x = 9 + 90 - x$$ $$x + y = 90 \Rightarrow y = 90 - x$$ - 1) Pick 1 of the equations...and solve for y - 2) Subst back into the other equation - 3) Solve for *x* - 4) Use known value of x to find y - 5) Double-check your answer! $$2x = 9 + 90 - x$$ - 1) Pick 1 of the equations...and solve for y - 2) Subst back into the other equation - 3) Solve for x - 4) Use known value of x to find y - 5) Double-check your answer! $$2x = 9 + 90 - x$$ $$+x + x$$ - 1) Pick 1 of the equations...and solve for *y* - 2) Subst back into the other equation - 3) Solve for x - 4) Use known value of x to find y - 5) Double-check your answer! $$3x = 99$$ $$x = 33$$ - 1) Pick 1 of the equations...and solve for y - 2) Subst back into the other equation - 3) Solve for *x* - 4) Use known value of x to find y - 5) Double-check your answer! $$x = 33 \qquad 2x = 9 + y$$ $$x + y = 90$$ - 1) Pick 1 of the equations...and solve for *y* - 2) Subst back into the other equation - 3) Solve for x - 4) Use known value of x to find y - 5) Double-check your answer! $$x = 33 \qquad 2x = 9 + y$$ $$x + y = 90$$ - 1) Pick 1 of the equations...and solve for y - 2) Subst back into the other equation - 3) Solve for x - 4) Use known value of x to find y - 5) Double-check your answer! $$(x = 33) \quad 2x = 9 + y$$ $$x + y = 90$$ - 1) Pick 1 of the equations...and solve for y - 2) Subst back into the other equation - 3) Solve for x - 4) Use known value of x to find y - 5) Double-check your answer! $$(x = 33) \quad 2x = 9 + y$$ $$33 + y = 90$$ - 1) Pick 1 of the equations...and solve for y - 2) Subst back into the other equation - 3) Solve for x - 4) Use known value of x to find y - 5) Double-check your answer! $$x = 33 2x = 9 + y 33 + y = 90$$ - 1) Pick 1 of the equations...and solve for y - 2) Subst back into the other equation - 3) Solve for x - 4) Use known value of x to find y - 5) Double-check your answer! $$x = 33$$ $2x = 9 + y$ $y = 57$ $33 + y = 90$ - 1) Pick 1 of the equations...and solve for *y* - 2) Subst back into the other equation - 3) Solve for *x* - 4) Use known value of x to find y - 5) Double-check your answer! $$x = 33$$ $$y = 57$$ - 1) Pick 1 of the equations...and solve for y - 2) Subst back into the other equation - 3) Solve for x - 4) Use known value of x to find y - 5) Double-check your answer! $$x = 33$$ $2x = 9 + y$ $y = 57$ $x + y = 90$ - 1) Pick 1 of the equations...and solve for *y* - 2) Subst back into the other equation - 3) Solve for x - 4) Use known value of x to find y - 5) Double-check your answer! $$x = 33$$ $2x = 9 + y$ $y = 57$ $x + y = 90$ - 1) Pick 1 of the equations...and solve for y - 2) Subst back into the other equation - 3) Solve for x - 4) Use known value of x to find y - 5) Double-check your answer! $$x = 33 23^3 = 9 + 57$$ $$y = 57 33 + 57 = 90$$ - 1) Pick 1 of the equations...and solve for y - 2) Subst back into the other equation - 3) Solve for x - 4) Use known value of x to find y - 5) Double-check your answer! $$x = 33$$ $66 = 66$ $y = 57$ $90 = 90$ - 1) Pick 1 of the equations...and solve for *y* - 2) Subst back into the other equation - 3) Solve for x - 4) Use known value of x to find y - 5) Double-check your answer! $$x = 33$$ $66 = 66$ \sqrt{y} $y = 57$ $90 = 90$ - 1) Pick 1 of the equations...and solve for *y* - 2) Subst back into the other equation - 3) Solve for *x* - 4) Use known value of x to find y - 5) Double-check your answer! ## Solve this system for x and y $$3x - y = -5$$ $$x - y = -1$$ #### Solve this system for x and y $$3x - y = -5$$ $$x - y = -1$$ $$(-2, -1)$$ ## Solve this system for x and y $$3x - y = -5$$ $$x - y = -1$$ $$3x - (x + 1) = -5$$ $$3x - x - 1 = -5$$ $$2x = -4$$ $$3x - y = -5$$ $$3(-2) - y = -5$$ $$-6 - y = -5$$ $$-y = 1$$ $$y = -1$$ $$3x - y = -5$$ $$-6 + 1 = -5$$ $$-2 + 1 = -1$$ $$-5 = -5$$ $$-1 = -1$$ $$3x - y = -5$$ $$x - y = -1$$ $$3x - y = -5$$ $$x - y = -1$$ $$3x - y = -5$$ $$x - y = -1$$ $$x = 0, y = 5$$ $$3x - y = -5$$ $$x - y = -1$$ $$x = -5/3, y = 0$$ $$3x - y = -5$$ $$x - y = -1$$ $$3x - y = -5$$ $$x - y = -1$$ $$3x - y = -5$$ $$x - y = -1$$ $$x = 0, y = 1$$ $$3x - y = -5$$ $$x - y = -1$$ $$x = -1, y = 0$$ $$3x - y = -5$$ $$x - y = -1$$ $$3x - y = -5$$ $$x - y = -1$$ $$3x - y = -5$$ $$x - y = -1$$ $$3x - y = -5$$ $$x - y = -1$$ $$3x - y = -5$$ $$x - y = -1$$ $$3x - y = -5$$ $$x - y = -1$$ $$x = -2$$ $$y = -1$$ $$3x - y = -5$$ $$x - y = -1$$ $$x = -2$$ $$y = -1$$ $$1$$ $$x = -2$$ $$y = -1$$ $$3x - y = -5$$ $$x - y = -1$$ $$x = -2$$ $$y = -1$$ The solution is the point of intersection! ## Solve the system $$16x - y = 2$$ $$3x - y = -11$$ #### Solve the system $$16x - y = 2$$ $$3x - y = -11$$ #### Solve the system ## Solve the system $$3x - y = 7$$ $$9x - 3y = 3$$ ## Solve the system $$3x - y = 7 - y = 3x - 7$$ $$9x - 3y = 3$$ $$9x - 3(3x - 7) = 3$$ $$9x - 9x + 21 = 3$$ $$21 \neq 3$$ $$0ops, doesn't work!$$ $$\Rightarrow no solution$$ $$\Rightarrow the lines don't intersect$$ #### Solve the system $$3x = 2y + 5$$ $$6x - 4y = 10$$ ## Solve the system $$3x = 2y + 5 - y = \frac{3}{2}x - \frac{5}{2}$$ $$6x - 4y = 10$$ $$6x - 4(\frac{3}{2}x - \frac{5}{2}) = 10$$ $$6x - 6x + 10 = 10$$ $$10 = 10$$ $$-10 - 10$$ $$0 = 0$$ err, where did the variable go? ⇒same line \Rightarrow infinite number of solutions - 1) If you get a value for x and y that work: - * 1 solution - * Intersection point of the 2 lines - 1) If you get a value for x and y that work: - * 1 solution - * Intersection point of the 2 lines - 2) If the variables disappear leaving 0 = 0: - * Infinite # of solutions - * Equations represent same line - 1) If you get a value for *x* and *y* that work: - * 1 solution - * Intersection point of the 2 lines - 2) If the variables disappear leaving 0 = 0: - * Infinite # of solutions - * Equations represent same line - 3) If you get false result (i.e. 3 = 7) - * No solutions - * The lines don't intersect #### L 4-4 HW Problems Pg 204 #1-4, 7-13, 15, 19, 21, 28-36 Pg 209 #1-9